CONIFERYL ALCOHOL GLUCOSIDE FROM

Astragalus bungeanus

M. D. Alaniya,¹ N. Sh. Kavtaradze,¹ V. Mshvildadze,¹ S. Lavoi,² and A. Pichette²

We previously reported the isolation and structure elucidation of flavonoids and a triterpene glycoside from *Astragalus bungeanus* Boriss. (Leguminosae L.) [1, 2].

Chromatography of the aqueous alcohol extract of *A. bungeanus* over a column of silica gel produced the total aforementioned compounds, which were separated by chromatography over silica gel with elution by water-saturated butanol to afford **1**, 112 mg.

Compound **1** formed white needlelike crystals, mp 183-186°C, $C_{16}H_{22}O_8$, MW 342.3411, $R_f 0.66$ (EA:MeOH:H₂O, 100:16.5:13.5).

The structure of this compound, which was isolated from the *Astragalus* L. genus for the first time, was established by chemical and spectral methods. Heating to 100° C for 40 min in H₂SO₄ (5%) hydrolyzed it to form D-glucose and the genin.

UV and IR spectra of the compound itself indicated that it was aromatic. UV spectrum (EtOH, λ_{max} , nm): 275; IR spectrum (KBr, ν_{max} , cm⁻¹): 3400-3500 (OH), 1000-1200 (ether bonds). The structure was elucidated using PMR (400 MHz) and ¹³C NMR (100 MHz) in C₅D₅N (δ , ppm, J/Hz) (Table 1).

C atom	$\delta_{\rm C}$	DEPT	δ_{H}	Mult.H	${}^{3}J_{HH}$
1	132.3	С			
2	110.8	CH	7.21	d	2.0
3	150.3	С			
4	147.5	С			
5	116.4	CH	7.56	0*	
6	119.9	СН	7.06	dd	8.4; 1.9
7	129.3	СН	6.88	br.d	15.9
8	130.0	CH	6.59	td	5.2; 15.9
9	63.0	CH_2	4.58	0	
1′	102.2	CH	5.71	d	6.8
2'	74.9		4.36	0	
3'	78.6		4.37	0	
4′	71.9		4.36	0	
5'	78.9		4.12	m	
6'	62.4	CH_2	4.54; 4.41	m	
OCH ₃	55.9	CH ₃	3.75	8	

TABLE 1. ¹³C and ¹H NMR Spectra of 1

*o - Overlapped.

UDC 547.992

¹⁾ Iovel Kutateladze Institute of Pharmacochemistry, 0159, Tbilisi, Georgia, ul. P. Sarajishvili, 36, fax (+995) 32 52 00 23, e-mail: merialania@yahoo.com; 2) Department des Sciences Fondamentales, Universite du Quebec a Chicoutimi, Chicoutimi, Quebec, Canada. Translated from Khimiya Prirodnykh Soedinenii, No. 6, p. 586, November-December, 2007. Original article submitted August 21, 2007.

The PMR spectrum contained 17 resonances. Of these, 7 at 5.71 (D-glucose anomeric proton) and 4.36-4.41 ppm belonged to sugar protons. A singlet at 3.75 ppm belonged to a methoxy. Protons of an aromatic ring were observed at 7.56 and 7.06 ppm. Protons of an unsaturated aliphatic moiety were seen at 6.59 (1H, 7-H) and 4.58 (1H, 8-H). A CH₂ group appeared at 4.58 ppm as an overlapping multiplet. The nature of the splitting and the SSCC of the sugar resonances indicated that the anomeric center had the β -configuration and the pyranose form of the D-glucose ring.

The chemical shifts of the C resonances were consistent with a trisubstituted benzene ring (Table 1) [3, 4]. Thus, it was established that **1** was coniferyl alcohol 4-O- β -D-glucopyranoside.

REFERENCES

- 1. M. D. Alaniya, in: Materials of the 1st Conference of Pharmacists of Georgia, Tbilisi, 1979, p. 165.
- 2. M. D. Alaniya, L. N. Gvazava, and V. S. Kikoladze, Izv. Akad. Nauk Gruzii, Ser. Khim., 22, 1, 62 (1996).
- 3. S. A. Medvedeva, S. Z. Ivanova, V. A. Babkin, A. I. Rezvukhin, and I. V. Volkova, *Khim. Prir. Soedin.*, 560 (1985).
- 4. B. Vermes, O. Seligmann, and H. Vagner, *Phytochemistry*, **30**, 3087 (1991).